Agent Execution & Runtimes
This document describes the supported agent execution models, runtimes, and protocols in the Meta Agent Platform.
Overview
Agents can be executed in various environments to support diverse use cases, including containerized, API-based, protocol-driven, multi-modal, and edge deployments.
Execution Architecture
The platform's execution architecture consists of several key components:
- Execution Engine: Manages agent lifecycle and runtime selection
- Runtime Adapters: Interface with specific execution environments
- Input/Output Processors: Handle data transformation and validation
- Observability Layer: Collects metrics, logs, and traces
- Security Manager: Enforces security policies and isolation

Note: This is a placeholder for an agent execution architecture diagram. The actual diagram should be created and added to the project.
Execution Types
1. Docker Container Agents
- Isolation: Agents run in Docker containers for security and reproducibility.
- Lifecycle: Pull image, inject inputs, execute, collect outputs, teardown.
- Resource Control: CPU, memory, and network limits enforced.
- Best For: Complex dependencies, custom environments, reproducibility.
Container Execution Flow
sequenceDiagram
participant Orchestrator
participant ContainerRuntime
participant Agent
Orchestrator->>ContainerRuntime: Pull image
ContainerRuntime-->>Orchestrator: Image ready
Orchestrator->>ContainerRuntime: Create container with resource limits
ContainerRuntime-->>Orchestrator: Container created
Orchestrator->>ContainerRuntime: Inject inputs (env vars, files, or stdin)
ContainerRuntime->>Agent: Start execution with inputs
Agent->>Agent: Process inputs
Agent-->>ContainerRuntime: Return outputs (stdout, files)
ContainerRuntime-->>Orchestrator: Collect outputs
Orchestrator->>ContainerRuntime: Teardown container
Example Docker Agent Configuration
# docker-agent-config.yaml
name: text-classifier
version: 1.0.0
type: docker
container:
image: registry.example.com/agents/text-classifier:1.0.0
pull_policy: IfNotPresent
command: ["python", "/app/run.py"]
working_dir: /app
user: agent
resources:
memory: "512Mi"
memory_limit: "1Gi"
cpu: "0.5"
cpu_limit: "1.0"
input:
method: env # env, file, or stdin
format: json
output:
method: stdout # stdout or file
format: json
path: /app/output.json # Only for file output
security:
read_only_fs: true
no_new_privileges: true
drop_capabilities: ["ALL"]
allow_network: false
2. API Agents
- RESTful APIs: Agents exposed as HTTP endpoints.
- Integration: Platform sends requests, receives responses.
- Authentication: Supports API keys, OAuth2, custom headers.
- Best For: SaaS agents, cloud services, scalable APIs.
API Execution Flow
sequenceDiagram
participant Orchestrator
participant APIAdapter
participant ExternalAPI
Orchestrator->>APIAdapter: Send request with inputs
APIAdapter->>APIAdapter: Format request (JSON, XML, etc.)
APIAdapter->>APIAdapter: Add authentication headers
APIAdapter->>ExternalAPI: HTTP request (GET, POST, etc.)
ExternalAPI-->>APIAdapter: HTTP response
APIAdapter->>APIAdapter: Parse response
APIAdapter->>APIAdapter: Transform to platform format
APIAdapter-->>Orchestrator: Return formatted outputs
Example API Agent Configuration
# api-agent-config.yaml
name: language-translator
version: 1.0.0
type: api
endpoint:
url: https://api.translation-service.com/v1/translate
method: POST
timeout: 30 # seconds
retry:
max_attempts: 3
backoff: exponential
initial_delay: 1.0 # seconds
max_delay: 10.0 # seconds
authentication:
type: api_key
header_name: X-API-Key
key_reference: ${TRANSLATION_API_KEY} # Environment variable reference
request:
content_type: application/json
body_template: |
{
"text": "${input.text}",
"source_language": "${input.source_lang}",
"target_language": "${input.target_lang}"
}
response:
success_codes: [200, 201]
error_path: $.error.message
output_mapping:
translated_text: $.data.translation
detected_language: $.data.detected_source_language
confidence: $.data.confidence
3. A2A/Open Agent Protocol
- Standardized Protocol: Supports interoperability with external agent frameworks.
- Features: Runs, threads, memory management, streaming output.
- Integration: Adapter classes translate between platform and protocol.
- Reference: Agent Protocol Integration
A2A Protocol Flow
sequenceDiagram
participant Orchestrator
participant A2AAdapter
participant ExternalAgent
Orchestrator->>A2AAdapter: Create run with inputs
A2AAdapter->>ExternalAgent: POST /runs
ExternalAgent-->>A2AAdapter: Return run_id
loop Until completed
A2AAdapter->>ExternalAgent: GET /runs/{run_id}
ExternalAgent-->>A2AAdapter: Return status
end
A2AAdapter->>ExternalAgent: GET /runs/{run_id}/steps
ExternalAgent-->>A2AAdapter: Return step results
A2AAdapter->>A2AAdapter: Transform to platform format
A2AAdapter-->>Orchestrator: Return outputs
Example A2A Agent Configuration
# a2a-agent-config.yaml
name: research-assistant
version: 1.0.0
type: a2a
endpoint:
url: https://agent-protocol-service.example.com
timeout: 300 # seconds
authentication:
type: bearer
token_reference: ${AGENT_PROTOCOL_TOKEN}
protocol:
version: "1.0"
features:
- streaming
- thread_management
- tool_use
capabilities:
- web_search
- code_generation
- data_analysis
streaming: true
max_steps: 15
threads_enabled: true
4. Multi-Modal Runtimes
- Vision, Audio, Sensor Agents: Specialized runtimes for processing images, audio, sensor data.
- Frameworks: OpenCV, PyTorch, TensorFlow, Whisper, etc.
- Fusion: Support for cross-modal orchestration.
Multi-Modal Execution Flow
sequenceDiagram
participant Orchestrator
participant ModalityRouter
participant VisionProcessor
participant AudioProcessor
participant TextProcessor
participant FusionEngine
Orchestrator->>ModalityRouter: Process multi-modal input
ModalityRouter->>VisionProcessor: Process image data
ModalityRouter->>AudioProcessor: Process audio data
ModalityRouter->>TextProcessor: Process text data
VisionProcessor-->>FusionEngine: Vision features
AudioProcessor-->>FusionEngine: Audio features
TextProcessor-->>FusionEngine: Text features
FusionEngine->>FusionEngine: Apply fusion strategy
FusionEngine-->>Orchestrator: Return fused results
Example Multi-Modal Agent Configuration
# multi-modal-agent-config.yaml
name: content-analyzer
version: 1.0.0
type: multi-modal
modalities:
- type: vision
processor: image_classifier
model: efficientnet_b0
input_format: [jpg, png]
preprocessing:
resize: [224, 224]
normalize: true
- type: text
processor: text_analyzer
model: distilbert-base-uncased
max_length: 512
- type: audio
processor: audio_classifier
model: yamnet
sample_rate: 16000
fusion:
strategy: late_fusion
weights:
vision: 0.4
text: 0.4
audio: 0.2
resources:
memory: "2Gi"
cpu: "1.0"
gpu: "0.5"
5. Edge Runtime
- Lightweight Execution: Optimized for resource-constrained devices.
- Offline Operation: Local storage, sync when online.
- Technologies: WebAssembly, SQLite, ONNX Runtime, TFLite.
Edge Execution Flow
sequenceDiagram
participant EdgeDevice
participant LocalRuntime
participant Agent
participant LocalStorage
participant SyncManager
participant Cloud
EdgeDevice->>LocalRuntime: Trigger agent execution
LocalRuntime->>Agent: Execute with inputs
Agent->>LocalStorage: Read/write data
Agent-->>LocalRuntime: Return results
LocalRuntime-->>EdgeDevice: Display results
opt When online
SyncManager->>LocalStorage: Get pending changes
SyncManager->>Cloud: Sync data and results
Cloud-->>SyncManager: Sync acknowledgement
SyncManager->>LocalStorage: Update sync status
end
Example Edge Agent Configuration
# edge-agent-config.yaml
name: object-detector-edge
version: 1.0.0
type: edge
runtime: tflite
model:
path: /models/ssd_mobilenet_v2.tflite
quantized: true
input_shape: [1, 300, 300, 3]
resources:
max_memory: "200MB"
target_cpu: "0.3"
storage:
type: sqlite
path: /data/detections.db
max_size: "50MB"
retention_days: 7
sync:
mode: delta
interval: 3600 # seconds
max_batch_size: "1MB"
power:
low_power_mode: true
wake_lock: false
Execution Flow

Note: This is a placeholder for an agent execution flow diagram. The actual diagram should be created and added to the project.
-
Input Preparation: Inputs are validated and formatted per agent schema.
def prepare_input(raw_input, agent_schema): # Validate input against schema validation_result = validate_against_schema(raw_input, agent_schema) if not validation_result.valid: raise ValidationError(validation_result.errors) # Apply default values for missing fields input_with_defaults = apply_defaults(raw_input, agent_schema) # Transform input to agent-specific format transformed_input = transform_input(input_with_defaults, agent_schema) return transformed_input -
Execution: Agent is invoked in the appropriate runtime.
def execute_agent(agent_id, prepared_input, runtime_config): # Select appropriate runtime runtime = get_runtime_for_agent(agent_id, runtime_config) # Initialize runtime with agent runtime.initialize(agent_id) # Execute agent with prepared input execution_id = runtime.execute(prepared_input) # Wait for completion or timeout result = runtime.wait_for_completion(execution_id, timeout=runtime_config.timeout) return result -
Output Handling: Results are validated, post-processed, and returned.
def handle_output(raw_output, agent_schema): # Validate output against schema validation_result = validate_against_schema(raw_output, agent_schema.output) if not validation_result.valid: raise OutputValidationError(validation_result.errors) # Transform output to platform format transformed_output = transform_output(raw_output, agent_schema.output) # Apply any post-processing processed_output = apply_post_processing(transformed_output, agent_schema.post_processing) return processed_output -
Observability: Logs, metrics, and traces are collected for monitoring.
def collect_observability_data(execution_id, agent_id, runtime_metrics): # Collect logs logs = get_logs_for_execution(execution_id) # Collect metrics metrics = { 'execution_time_ms': runtime_metrics.execution_time, 'memory_usage_mb': runtime_metrics.memory_usage, 'cpu_usage_percent': runtime_metrics.cpu_usage } # Create trace trace = create_execution_trace(execution_id, agent_id, logs, metrics) # Store observability data store_observability_data(trace) return trace
Protocols & Adapters
Adapter Pattern
Adapters standardize the interface between the platform and various agent runtimes:
from abc import ABC, abstractmethod
class RuntimeAdapter(ABC):
"""Base adapter interface for all runtime types"""
@abstractmethod
def initialize(self, agent_id):
"""Initialize the runtime with the specified agent"""
pass
@abstractmethod
def execute(self, input_data):
"""Execute the agent with the given input"""
pass
@abstractmethod
def wait_for_completion(self, execution_id, timeout=None):
"""Wait for execution to complete and return results"""
pass
@abstractmethod
def get_status(self, execution_id):
"""Get the current status of an execution"""
pass
@abstractmethod
def terminate(self, execution_id):
"""Terminate an execution"""
pass
# Example Docker adapter implementation
class DockerRuntimeAdapter(RuntimeAdapter):
def __init__(self, docker_client, config):
self.docker = docker_client
self.config = config
self.containers = {}
def initialize(self, agent_id):
agent_config = get_agent_config(agent_id)
image = agent_config.container.image
# Pull image if needed
if agent_config.container.pull_policy == 'Always':
self.docker.images.pull(image)
return True
def execute(self, input_data):
agent_id = input_data.agent_id
agent_config = get_agent_config(agent_id)
# Prepare container configuration
container_config = {
'image': agent_config.container.image,
'command': agent_config.container.command,
'environment': self._prepare_environment(input_data, agent_config),
'mem_limit': agent_config.resources.memory_limit,
'cpu_quota': int(agent_config.resources.cpu_limit * 100000),
'network_disabled': not agent_config.security.allow_network,
'read_only': agent_config.security.read_only_fs,
'user': agent_config.container.user
}
# Create and start container
container = self.docker.containers.run(
**container_config,
detach=True
)
execution_id = f"docker-{container.id[:12]}"
self.containers[execution_id] = container
return execution_id
def wait_for_completion(self, execution_id, timeout=None):
container = self.containers.get(execution_id)
if not container:
raise ValueError(f"Unknown execution ID: {execution_id}")
try:
container.wait(timeout=timeout)
logs = container.logs().decode('utf-8')
# Parse output based on agent configuration
agent_id = self._get_agent_id_for_execution(execution_id)
agent_config = get_agent_config(agent_id)
if agent_config.output.method == 'stdout':
return self._parse_output(logs, agent_config)
elif agent_config.output.method == 'file':
output_file = agent_config.output.path
output_content = self._get_file_from_container(container, output_file)
return self._parse_output(output_content, agent_config)
finally:
# Cleanup container
self._cleanup_container(execution_id)
# Other methods implementation...
Security Considerations
Container Security
-
Image Scanning: Scan container images for vulnerabilities before execution.
-
Non-Root Execution: Run containers as non-privileged users.
-
Resource Limits: Enforce CPU, memory, and storage limits.
API Security
-
Input Validation: Validate all API inputs against schemas.
-
Rate Limiting: Implement rate limiting to prevent abuse.
# Using Redis for rate limiting def check_rate_limit(api_key, limit=100, period=3600): current = int(time.time()) key = f"rate_limit:{api_key}:{current // period}" count = redis_client.incr(key) if count == 1: redis_client.expire(key, period) if count > limit: return False # Rate limit exceeded return True # Within rate limit -
Authentication: Implement robust authentication mechanisms.
def verify_api_auth(request, auth_config): if auth_config.type == 'api_key': api_key = request.headers.get(auth_config.header_name) if not api_key: return False, "Missing API key" return verify_api_key(api_key), "Invalid API key" elif auth_config.type == 'oauth2': token = request.headers.get('Authorization', '').replace('Bearer ', '') if not token: return False, "Missing OAuth token" return verify_oauth_token(token), "Invalid OAuth token"
Edge Security
- Secure Boot: Verify integrity of edge runtime before execution.
- Encrypted Storage: Encrypt sensitive data stored on edge devices.
- Secure Updates: Implement signed updates and rollback mechanisms.
Troubleshooting
| Issue | Possible Cause | Solution |
|---|---|---|
| Container fails to start | Missing image or invalid configuration | Check image exists and configuration is valid |
| API timeout | Slow external service or network issues | Implement retry with backoff, check service status |
| Protocol version mismatch | Incompatible agent protocol version | Update adapter or agent to compatible version |
| Resource exhaustion | Insufficient resource limits | Increase resource limits or optimize agent |
| Authentication failure | Invalid or expired credentials | Refresh credentials or check configuration |
References
- Component Design: Agent Execution Components
- Edge Deployment Guide
- Multi-Modal Development Guide
- Agent Protocol Integration
- Docker Documentation
- Open Agent Protocol Specification
- TensorFlow Lite
- ONNX Runtime
Last updated: 2025-04-18